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Abstract
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Variational methods related to degenerate perturbation
theory are discussed in a genersl way through second order in

the energy and first order in the wave fuaction. U—K/ﬁ
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I. Introduction

Variational methods have been much used and studied asba
means of épproximately calculatingrthe effects' of a perturbation
on a non-degenerate eigenvaluel. “In this note we wish to make a
start on extending the discﬁssion to the degenerate case by trying
to get an idea of the types of problems which will be encountered.
Specifically we will consider situations in which the degeneracy ...
is broken in either first or second order.

It is a prime characteristic of degenerate perturbation
theory that a priori we do not know the correct zero order wave
function. Thus the appropriate tools to use are the variafional
principles given on page 299 af reference 1 which arise from direct
expansion of the variation principle for the total -energy, and
4Which allow one to vary the zero order function.

Let 5%2 be the zero order Hamiltonian,:ﬂﬁ » the perturbation
and 41 , etc. variational trial functions which are to
approx1mate the zero order wave function, first order correction, etc.

‘Now define jm) s 7 5 T®  etc. by
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From the discussion in reference 1 it then follows that the J
o | W
are to be made stationary with respect to variations of the (A
—~
the constants 1 being held fixed. The latter are then to
. JWw . . -
be determined from 20 , and provide variational approximations
to the zero order energy, first order energy correction, etc.
' (o) _
Now although we don't know the correct + we will assume
that we do know a complete set of degenerate eigenfunctions of ﬁb
belonging to the zero order eigenvalue in question. Denoting

these eigenfunctions by ﬂXD( where K=Y 2, ~~-- -D , D

being the extent of the degeneracy, and the common eigenvalue

Euﬂ ~{0)
by , then the only \% we will consider will be of the
form
. %
~ (0
oz (6)

where the Qo..., are constants to be determined.
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Then from _} =~ we have E - & i.e. &

is exact. Further we clearly have that not only is
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but, if 6\\J is any variation of < then also
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From these observations it then follows that we may dispense
) Y 0
with I , and replace J > s SLO s 343} and TN) by

the simpler expressions
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After these prelimineries we now turn to a detailed discussion
A Y (D - e (ﬂ?
o . . .
of & , & , W and W . In the process we will
encounter various complexities all of which will be recognized

as the analogs, within our variactional approach, of well known

complications in the exact sum over states method.

ITI. The first corder energy correction

. )
Since we have exhausted the content of T we now turn to
/
W) . . 5 .
I . If we insert (6) into (11) and vary the Co.. s0 as to

'
A5
make 6 JV'ZD  then we find2 the set of homogeneous equations

> .~
L < e, (- €M) KD €, =0 (i3)

L VY
to determine the C,O_ and the & . These of course are

3
precisely the equations of the exact theory . In particular then
~ KN
the E will be exact, hence we will drop the tilde.

We will now go on to investigate two extreme cases:

Case I - all E(l) different, and hence the corresponding
- (o)

¢ are uniquely defined (and exact).

~OD)
Case 11 - all & identical.

Intermediate situations can be handled by analogous methods.
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IIT. and for Case 1.

The previous considerations evidently exhaust the content of

~ @ V)
J and 3t . We now turn to ‘J'CD . Denoting a particular

w) \
normalized solution of (9) by SN s Ei’,) , and denoting the

T oo
corresponding ¥ by ‘-\)v we now consider
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This now has the form of the familiar Hylleraas variation principle

. 1
for the second order energy, hence we just proceed as usual and

AV (7_)’ }
vary Yo ; the conditions 63_0/ =Ny , J ;?'q =0
o N T
then yielding an optimal ""o‘, and an optimal B Fur ther
one can show by the standard argument (reference 1, page 2/8)

w ~ )
that if © is the lowest cigenvalue of #o then & _, will
(S)
be an upper bound to the exact E -
‘\at‘\)
However, note that we do not completely determine Wa in

this way. Namely, not only do we have the usual innocuous ambiguity

w T
that & & ‘\2 > may be chosen arbitrarily, but we also
"\—(\
don't determine 4‘*\* b., ‘-\"2_ for Y40~ . One sees the most

N
easily hy noting that one can replace Y o in (14) by

(N >
L ZZ)L\/‘a E:—'\on» , where the Yoo  are arbitrary
- |

o .
constants, and get the same value for J o , since, as a
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consequence of (9)
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To determine <0‘Li,, ; q)o_ then we must evidently go
/
5
beyond OE'L . Let us then write
SO 4 on (16)
/
V) w)
where \Yo—.)_ has been determined from 30_ and is to be

uniquely defined by the requirement that 1t is orthogonal to
LD .
all (™ . Alsc we have chosen the convenient normalization

N
o)) () = so that the prime means no term b =a
PEAIENN, 2 =D P y

e 3
occurs in the sum. If we now insert this into JYg_ , then the

terms which explicitly involve the F;,o_ are
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where we have omitted terms which vanish identically. Tf now we
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vary Pbo«- we find
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(3)
But from (15) -- remember the §1N are normalized and

of course are orthogonal --

4 N i (‘Uﬁ) C‘) [\)’\,
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So v have

. ) W, G
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and hence the explicit solution
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Thus \%B— has now becn determined.
R
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Iv. Ei for case 11.

For case 11

e (B -EV)L> 25 (17)

so that the (;¢, are as yet completely arbitrary. Since we
.}/ /
. —4N Py

have evidently exhausted the content of ) we turn to +

) . . ~ R )
Inserting (6) into (10) and varying ¢ 4 one finds
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which. irn the notation of the previous section, can, from (17),

be written as

)

—F Con (f)aa\) o, — Pm)“‘a_> (18)

% 4B
So here we have a set of relations between the Cao 3 and

' : /
!\'L\)
‘Nskﬂl— . To get others we vary ‘{.JL* in % to find

Zea<oby, - EM s> o <85 - e dip =0 O

In general the set of equations (18) and (19) provides us
with a non-linear coupled problem which must be solved in some
self-consistent way. (If, however, one restricts oneself to
linear variational parameters and a fixed basis set the problem
becomes a simple linear oneq) One might, for example, guess

2
a set of C;b $ normalized so that :Z (Ca) . One would
[ Ny : f\..‘.“
then solve (16) for %) . Then with this i

wonld provide us with an approximate c and a new normalized

> (15)

\
set of CEG,s . One would then iterate until a consistent solution
is obtained. Having obtained one solution one would then go on

and look for another.




This ther. raises the gquesticn, how many

jO]

gne find? I one uses

PL4
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values will

)

ron linear parameters in

then it does not se=m obvicus that one cannot get more than D

1€ this is indeea the carge then cne would be

of chossing the 'tesr”™ D sclutions.

In any case {15) and (l6) provide us with
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method {or determining the ¥ and <Py

and

e i)
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let us suppose that we have D
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associated heing distinct
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preseumably uot exact . We will also assume
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discuss how one would complete the determination of

solutions QKQ,L 3

faced with the problem

an in principal
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where we have again dropped terms which vanish identically. In
N~ Cz_
addition QP is also invclved in the terms
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If now we vary ana, we find

o~ Aty
F.. + (‘-\’\,m B voy D =D (20)

)

~n X
while if we vary \%,C-l. we find

A

o~ )
< 6\‘) &L) (NDAE-‘D)) q/:jl > A~ <&q’\°~l.) CA)" Eln)) > 'f“Z Etoo-(&+a.)_,ﬂ \‘)b‘> D

and we must now solve this coupled set to determine the Eta»
AV

(and in addition L&”0.4_). If one uses a fixed basis set and

linear variational parameters the solution is simple, However,

since it does mot seem possible to give an explicit solution

in general, we leave the discussion at this point.

VI. Discussion

It is clear from this preliminary survey that a variational
approach to degenerate perturbation problems will involve one
in potentially quite complicated problems of solving coupled

functional equations in a self consistent way once the degeneracy



12 -

persists beyond first order. Also we have noted that there may
be difficulties in interpreting the solutions.

As we have mentioned the solutions to these problems are
straight forward if one uses linear variational parameters with
a fixed basis set (indeed explicit use of the variation principle
is really superfluous in this case), but how one handles other

parametrizations will presumably vary from case to case.

It is a pleasure to acknowledge helpful discussions with

Dr. Hojing Kim.




Footnotes and References -

.......

For a recent review see J. 0. Hirschfelder, W. Byers Brown,

and S. T. Epstein, Advan. Quantum Chem. 1, 255-374 (1964).

. . —_ . T Xw)
Note that with this sort ol trial function G+ -.:.1\‘»

where 'L is a small constant, is a possible variation whence
S 3’“"‘-‘-0 implies 3'("'20 . Similar remarks will apply to
other variations which we will be using later, so that we
will never need to use T"n'f-o explicitly.

See for example L. Pauling and E. B. Wilson, Jr.,

Introduction to Quantum Mechanics (McGraw Hill Book Co.,

New York, 1935, especially section 24).
With a fixed basis set one is doing perturbation theory
exactly for the operator ﬂo*a' , Where }'!70 = P3P
and é?\:' ?ﬂi g and where P is the projection operator
onto the basis set. If then ouec chooses the basis, as one

—
may always do, so as to diagonalize 3”,) , then all formulae
look like the exact sum over states formulae except the sums

are finite (See also H. J. Kolker and H. H. Michels, J. Chem.

Phys. 43, 1027 (1365)).

(ol
If o~ is not exact then all we can prove in general
. gl <)
concerning the relation between the ®a and the exact
(D

values is that for the ground state B, is an upper bound

\v . .
to the lowest E ) associated with the same symmetry

13



(see footnote 11, page 300 of reference 1). If one uses linear
variational parameters then, of course, one can say more (J.K.L.
Mac Donald, Phys. Rev. 43, 830 (1933). See also footnote 6).
This orthogonality assumption is not essential for the analysis
which follows. However, if '}.:;TL is a possible variation of
‘\'21 and conversely then it is easy to prove from (18) and (19)
tﬁat &:D and :\"tﬂ will be orthogonal. Thus given a set &,,‘_;)
which .did not yield < ‘Eu.m, Q—’% '280—-\, we can always get
orthogonality by entering the variational principle agaiﬁ with

)
the new variational function for o y

[N
7 €0 v

oz O-A-

~™)
where now the <, , are fixed and the D,  are linear

variational parameters which we are to determine. Incidentally,
5 . .
from MacDonald's theorem™ this will also ensure, at least for the
~
(] :
ground state, that the (new) E e , arranged in order of

increasing value, will be upper bounds to the similarly ordered

1)
exact € o




